LIQUIZYME

BILIRUBIN

(DMSO Method)

Intended Use

Diagnostic reagent for quantitative *in vitro* determination of Bilirubin in human serum.

Clinical Significance

Bilirubin is a breakdown product of haemoglobin. Bilirubin formed in the reticulo endothelial system is transported bound by albumin to the liver. This bilirubin is water insoluble and is known as indirect or unconjugated bilirubin. In the liver, bilirubin is conjugated to glucuronic acid to form direct bilirubin. Conjugated bilirubin is excreted via the biliary system into the intestine. Here it is metabolised by bacteria to urobilinogen & stercobilinogen.

Principle

In the determination of Bilirubin Total, Bilirubin is coupled with diazotized sulfanilic acid in the presence of ethylene glycol and dimethylsulfoxide as solvents to produce an intensely colored diazo dye. The intensity of colour of this solution is proportional to the concentration of the bilirubin total in the sample.

Reaction

Total Bilirubin

Bilirubin + Sulphanilic acid + Sodium Nitrite

DMSO

Azobilirubin

→ Azobilirubin

Direct Bilirubin

Bilirubin + Sulphanilic acid + Sodium Nitrite
→ Azobilirubin

Contents:

Reagent 1 : Total Bilirubin Reagent

Buffer : < 15 mmol/l Sulphanilic Acid : > 20 mmol/l

Reagent 2 : Total Nitrite Reagent

Sodium Nitrite : > 10 mmol/l Reagent 3 : Direct Bilirubin Reagent

Buffer : <15 mmol/l Sulphanilic Acid : >20 mmol/l

Reagent 4 : Direct Nitrite Reagent Sodium Nitrite : <10 mmol/l

Reagent 5: Bilirubin Artificial Standard : 10 mg/dl

Ready to use

BEACON

Unit Conversion

 $mg/dl \times 16.95 = \mu mol/l$

Normal Value:

Serum Total Bilirubin : upto 1.0 mg/dl

Direct Bilirubin : upto 0.3 mg/dl

Each Laboratory should establish it's own normal range representing its patient population.

Total Bilirubin

Performance Data

Data contained within this section is representative of performance on Beacon system. Data obtained in your laboratory may differ from these values.

Intra-assay precision	Mean	SD	CV
Within run (n=20)	(mg/dl)	(mg/dl)	(%)
Sample 1	1.06	0.03	3.16
Sample 2	4.47	0.04	0.92
Inter-assay precision	Mean	SD	CV
Run to run (n=20)	(mg/dl)	(mg/dl)	(%)
Sample 1	4.06	0.01	0.35

Comparison

A comparison between Beacon Bilirubin (Total & Direct) (y) and a commercially available test (x) using 20 samples gave following results:

y = 0.990 x + 0.042 mg/dl

r = 0.999

Direct Bilirubin

Performance Data

Data contained within this section is representative of performance on Beacon system. Data obtained in your laboratory may differ from these values.

Limit of quantification:0.0052 mgLinearity:20 mg/dlMeasuring range:0.0052 – 20 mg/dl

Intra-assay precision	Mean	SD	CV
Within run (n=20)	(mg/dl)	(mg/dl)	(%)
Sample 1	0.251	0.01	3.59
Sample 2	1.15	0.01	0.47

Inter-assay precision	Mean	SD	CV
Run to run (n=20)	(mg/dl)	(mg/dl)	(%)
Sample 1	1.16	0.01	1.02

Comparison

A comparison between Beacon Bilirubin (Total & Direct) (y) and a commercially available test (x) using 20 samples gave following results:

y = 0.993 x + 0.011 mg/dI

r = 0.999

Linearity:

This procedure is linear upto 20 mg/dl. If the values exceed this limit, dilute the sample with normal saline (NaCl 0.9%) and repeat the assay. Multiply result by dilution factor.

Interferences

Following substances do not interfere:

haemoglobin up to 7.5 g/l, triglycerides up to 1500 mg/dl.

Warning And Precautions

For in vitro diagnostic use. To be handled by entitled and professionally educated person.

Procedure:

Pipette into clean dry test tubes labeled as Blank (B), and Test (T):

Total Bilirubin

Addition Sequence	(B)	(T)
Total Bilirubin Reagent	1000 μΙ	1000 µl
Total Bilirubin Activator	-	20 μΙ
Serum	50 μl	50 μΙ

Direct Bilirubin

Addition Sequence	(B)	(T)
Direct Bilirubin Reagent	1000 μΙ	1000 µl
Direct Bilirubin Activator	-	20 μΙ
Serum	50 μl	50 μl

Mix well and incubate at 37°C for exactly 5 minutes. Measure the absorbance of the Test Samples (Abs. T) immediately against their respective Blanks.

Calculation

With factor:

Total Bilirubin = OD of test - OD of sample blank x Factor (20)

With artificial standard:

Bilirubin	OD test - OD of sample Blank
= =	x 10
Concentration (mg/dl)	, . · · ·
	OD of standard

Assay Parameters For Photometers

Mode	End Point
Mode	Ella Pollit
Wavelength	546
Sample Volume (μΙ)	50
Total Bili / Direct Bili Reagent (μΙ)	1000
Total Bili / Direct Bili Activator (μl)	20
Incubation Time	5 min
Reaction temperature (°C)	37
Linearity Low (mg/dl)	0.0052
Linearity High (mg/dl)	20
Blank with	Serum
Standard Concentration	10 mg/dl
Unit	mg/dl

References

- 1. Cornall, A. G., Bardawill, C. J., David, M. M.: J. Biol. Chem. 177, 751, 1949.
- 2.Doumas, B. T., Bayse, D. D. a kol.: Clin. Chem. 27, 1642, 1981.
- 3. Chromý, V., Fischer, J.: Clin. Chem. 23, 754, 1977.
- 4. Chromý, V., Fischer, J., Vozníèek, J.: Z. Med. Labor. Diagn. 21, 333, 1980.
- 5.Tietz Textbook of Clinical Chemistry and Molecular diagnostics. Burtis, C.A.
- 6.Ashwood, E.R., Bruns, D.E.; 5th edition, WB Saunders.

Symbols Used On Labels

REF

Catalogue Number 444

Manufacturer

Lot Number

 $\Box i$

See Instruction for Use

Content

1

Storage Temperature

CONT

Expiry Date

In Vitro Diagnostics

BEA/24/BID/LS/IFU-03 22/04/2022